Welcome to our research page featuring recent publications in the field of biostatistics and epidemiology! These fields play a crucial role in advancing our understanding of the causes, prevention, and treatment of various health conditions. Our team is dedicated to advancing the field through innovative studies and cutting-edge statistical analyses. On this page, you will find our collection of research publications describing the development of new statistical methods and their application to real-world data. Please feel free to contact us with any questions or comments.
Filter
Topic
Showing 1 of 2 publications
A common problem in the analysis of multiple data sources, including individual participant data meta-analysis (IPD-MA), is the misclassification of binary variables. Misclassification may lead to biased estimators of model parameters, even when the misclassification is entirely random. We aimed to develop statistical methods that facilitate unbiased estimation of adjusted and unadjusted exposure-outcome associations and between-study heterogeneity in IPD-MA, where the extent and nature of exposure misclassification may vary across studies.
We present Bayesian methods that allow misclassification of binary exposure variables to depend on study- and participant-level characteristics. In an example of the differential diagnosis of dengue using two variables, where the gold standard measurement for the exposure variable was unavailable for some studies which only measured a surrogate prone to misclassification, our methods yielded more accurate estimates than analyses naive with regard to misclassification or based on gold standard measurements alone. In a simulation study, the evaluated misclassification model yielded valid estimates of the exposure-outcome association, and was more accurate than analyses restricted to gold standard measurements.
Our proposed framework can appropriately account for the presence of binary exposure misclassification in IPD-MA. It requires that some studies supply IPD for the surrogate and gold standard exposure, and allows misclassification to follow a random effects distribution across studies conditional on observed covariates (and outcome). The proposed methods are most beneficial when few large studies that measured the gold standard are available, and when misclassification is frequent.
The performance of a drug in a clinical trial setting often does not reflect its effect in daily clinical practice. In this third of three reviews, we examine the applications that have been used in the literature to predict real-world effectiveness from randomized controlled trial efficacy data. We searched MEDLINE, EMBASE from inception to March 2014, the Cochrane Methodology Register, and websites of key journals and organisations and reference lists. We extracted data on the type of model and predictions, data sources, validation and sensitivity analyses, disease area and software. We identified 12 articles in which four approaches were used: multi-state models, discrete event simulation models, physiology-based models and survival and generalized linear models. Studies predicted outcomes over longer time periods in different patient populations, including patients with lower levels of adherence or persistence to treatment or examined doses not tested in trials. Eight studies included individual patient data. Seven examined cardiovascular and metabolic diseases and three neurological conditions. Most studies included sensitivity analyses, but external validation was performed in only three studies. We conclude that mathematical modelling to predict real-world effectiveness of drug interventions is not widely used at present and not well validated.