loader
publication

Innovation

Welcome to our research page featuring recent publications in the field of biostatistics and epidemiology! These fields play a crucial role in advancing our understanding of the causes, prevention, and treatment of various health conditions. Our team is dedicated to advancing the field through innovative studies and cutting-edge statistical analyses. On this page, you will find our collection of research publications describing the development of new statistical methods and their application to real-world data. Please feel free to contact us with any questions or comments.

Filter

Topic

History

Showing 1 of 2 publications

Missing data is poorly handled and reported in prediction model studies using machine learning: a literature review

Objectives: Missing data is a common problem during the development, evaluation, and implementation of prediction models. Although machine learning (ML) methods are often said to be capable of circumventing missing data, it is unclear how these methods are used in medical research. We aim to find out if and how well prediction model studies using machine learning report on their handling of missing data.

Study design and Setting: We systematically searched the literature on published papers between 2018 and 2019 about primary studies developing and/or validating clinical prediction models using any supervised ML methodology across medical fields. From the retrieved studies information about the amount and nature (e.g. missing completely at random, potential reasons for missingness) of missing data and the way they were handled were extracted.

Results: We identified 152 machine learning-based clinical prediction model studies. A substantial amount of these 152 papers did not report anything on missing data (n = 56/152). A majority (n = 96/152) reported details on the handling of missing data (e.g., methods used), though many of these (n = 46/96) did not report the amount of the missingness in the data. In these 96 papers the authors only sometimes reported possible reasons for missingness (n = 7/96) and information about missing data mechanisms (n = 8/96). The most common approach for handling missing data was deletion (n = 65/96), mostly via complete-case analysis (CCA) (n = 43/96). Very few studies used multiple imputation (n = 8/96) or built-in mechanisms such as surrogate splits (n = 7/96) that directly address missing data during the development, validation, or implementation of the prediction model.

Conclusion: Though missing values are highly common in any type of medical research and certainly in the research based on routine healthcare data, a majority of the prediction model studies using machine learning does not report sufficient information on the presence and handling of missing data. Strategies in which patient data are simply omitted are unfortunately the most often used methods, even though it is generally advised against and well known that it likely causes bias and loss of analytical power in prediction model development and in the predictive accuracy estimates. Prediction model researchers should be much more aware of alternative methodologies to address missing data.

Journal: J Clin Epidemiol |
Year: 2021
Citation: 53
How well can we assess the validity of non-randomised studies of medications? A systematic review of assessment tools

Objective: To determine whether assessment tools for non-randomised studies (NRS) address critical elements that influence the validity of NRS findings for comparative safety and effectiveness of medications.

Design: Systematic review and Delphi survey.

Data sources: We searched PubMed, Embase, Google, bibliographies of reviews and websites of influential organisations from inception to November 2019. In parallel, we conducted a Delphi survey among the International Society for Pharmacoepidemiology Comparative Effectiveness Research Special Interest Group to identify key methodological challenges for NRS of medications. We created a framework consisting of the reported methodological challenges to evaluate the selected NRS tools.

Study selection Checklists or scales assessing NRS.

Data extraction: Two reviewers extracted general information and content data related to the prespecified framework.

Results: Of 44 tools reviewed, 48% (n=21) assess multiple NRS designs, while other tools specifically addressed case-control (n=12, 27%) or cohort studies (n=11, 25%) only. Response rate to the Delphi survey was 73% (35 out of 48 content experts), and a consensus was reached in only two rounds. Most tools evaluated methods for selecting study participants (n=43, 98%), although only one addressed selection bias due to depletion of susceptibles (2%). Many tools addressed the measurement of exposure and outcome (n=40, 91%), and measurement and control for confounders (n=40, 91%). Most tools have at least one item/question on design-specific sources of bias (n=40, 91%), but only a few investigate reverse causation (n=8, 18%), detection bias (n=4, 9%), time-related bias (n=3, 7%), lack of new-user design (n=2, 5%) or active comparator design (n=0). Few tools address the appropriateness of statistical analyses (n=15, 34%), methods for assessing internal (n=15, 34%) or external validity (n=11, 25%) and statistical uncertainty in the findings (n=21, 48%). None of the reviewed tools investigated all the methodological domains and subdomains.

Conclusions: The acknowledgement of major design-specific sources of bias (eg, lack of new-user design, lack of active comparator design, time-related bias, depletion of susceptibles, reverse causation) and statistical assessment of internal and external validity is currently not sufficiently addressed in most of the existing tools. These critical elements should be integrated to systematically investigate the validity of NRS on comparative safety and effectiveness of medications.

Systematic review protocol and registration: https://osf.io/es65q.

Journal: BMJ Open |
Year: 2021
Citation: 7