loader
publication

Innovation

Welcome to our research page featuring recent publications in the field of biostatistics and epidemiology! These fields play a crucial role in advancing our understanding of the causes, prevention, and treatment of various health conditions. Our team is dedicated to advancing the field through innovative studies and cutting-edge statistical analyses. On this page, you will find our collection of research publications describing the development of new statistical methods and their application to real-world data. Please feel free to contact us with any questions or comments.

Filter

Topic

History

Showing 1 of 4 publications

Systematic Review Reveals Lack of Causal Methodology Applied to Pooled Longitudinal Observational Infectious Disease Studies

Objectives: Among ID studies seeking to make causal inferences and pooling individual-level longitudinal data from multiple infectious disease cohorts, we sought to assess what methods are being used, how those methods are being reported, and whether these factors have changed over time.

Study design and setting: Systematic review of longitudinal observational infectious disease studies pooling individual-level patient data from 2+ studies published in English in 2009. 2014, or 2019. This systematic review protocol is registered with PROSPERO (CRD42020204104).

Results: Our search yielded 1,462 unique articles. Of these, 16 were included in the final review. Our analysis showed a lack of causal inference methods and of clear reporting on methods and the required assumptions.

Conclusion: There are many approaches to causal inference which may help facilitate accurate inference in the presence of unmeasured and time-varying confounding. In observational ID studies leveraging pooled, longitudinal IPD, the absence of these causal inference methods and gaps in the reporting of key methodological considerations suggests there is ample opportunity to enhance the rigor and reporting of research in this field. Interdisciplinary collaborations between substantive and methodological experts would strengthen future work.

Journal: J Clin Epidemiol |
Year: 2022
Citation: 2
Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review

While the opportunities of ML and AI in healthcare are promising, the growth of complex data-driven prediction models requires careful quality and applicability assessment before they are applied and disseminated in daily practice. This scoping review aimed to identify actionable guidance for those closely involved in AI-based prediction model (AIPM) development, evaluation and implementation including software engineers, data scientists, and healthcare professionals and to identify potential gaps in this guidance. We performed a scoping review of the relevant literature providing guidance or quality criteria regarding the development, evaluation, and implementation of AIPMs using a comprehensive multi-stage screening strategy. PubMed, Web of Science, and the ACM Digital Library were searched, and AI experts were consulted. Topics were extracted from the identified literature and summarized across the six phases at the core of this review: (1) data preparation, (2) AIPM development, (3) AIPM validation, (4) software development, (5) AIPM impact assessment, and (6) AIPM implementation into daily healthcare practice. From 2683 unique hits, 72 relevant guidance documents were identified. Substantial guidance was found for data preparation, AIPM development and AIPM validation (phases 1-3), while later phases clearly have received less attention (software development, impact assessment and implementation) in the scientific literature. The six phases of the AIPM development, evaluation and implementation cycle provide a framework for responsible introduction of AI-based prediction models in healthcare. Additional domain and technology specific research may be necessary and more practical experience with implementing AIPMs is needed to support further guidance.

Journal: NPJ Digit |
Year: 2022
Citation: 123
Patient- and Tumour-related Prognostic Factors for Urinary Incontinence After Radical Prostatectomy for Nonmetastatic Prostate Cancer: A Systematic Review and Meta-analysis

Context: While urinary incontinence (UI) commonly occurs after radical prostatectomy (RP), it is unclear what factors increase the risk of UI development.

Objective: To perform a systematic review of patient- and tumour-related prognostic factors for post-RP UI. The primary outcome was UI within 3 mo after RP. Secondary outcomes included UI at 3-12 mo and ≥12 mo after RP.

Evidence acquisition: Databases including Medline, EMBASE, and CENTRAL were searched between January 1990 and May 2020. All studies reporting patient- and tumour-related prognostic factors in univariable or multivariable analyses were included. Surgical factors were excluded. Risk of bias (RoB) and confounding assessments were performed using the Quality In Prognosis Studies (QUIPS) tool. Random-effects meta-analyses were performed for all prognostic factor, where possible.

Evidence synthesis: A total of 119 studies (5 randomised controlled trials, 24 prospective, 88 retrospective, and 2 case-control studies) with 131 379 patients were included. RoB was high for study participation and confounding; moderate to high for statistical analysis, study attrition, and prognostic factor measurement; and low for outcome measurements. Significant prognostic factors for postoperative UI within 3 mo after RP were age (odds ratio [OR] per yearly increase 1.04, 95% confidence interval [CI] 1.03-1.05), membranous urethral length (MUL; OR per 1-mm increase 0.81, 95% CI 0.74-0.88), prostate volume (PV; OR per 1-ml increase 1.005, 95% CI 1.000-1.011), and Charlson comorbidity index (CCI; OR 1.28, 95% CI 1.09-1.50).

Conclusions: Increasing age, shorter MUL, greater PV, and higher CCI are independent prognostic factors for UI within 3 mo after RP, with all except CCI remaining prognostic at 3-12 mo.

Patient summary: We reviewed the literature to identify patient and disease factors associated with urinary incontinence after surgery for prostate cancer. We found increasing age, larger prostate volume, shorter length of a section of the urethra (membranous urethra), and lower fitness were associated with worse urinary incontinence for the first 3 mo after surgery, with all except lower fitness remaining predictive at 3-12 mo.

Journal: European Eurology Focus |
Year: 2021
Citation: 17
Combining randomized and non-randomized evidence in network meta-analysis

Non-randomized studies aim to reveal whether or not interventions are effective in real-life clinical practice, and there is a growing interest in including such evidence in the decision-making process. We evaluate existing methodologies and present new approaches to using non-randomized evidence in a network meta-analysis of randomized controlled trials (RCTs) when the aim is to assess relative treatment effects. We first discuss how to assess compatibility between the two types of evidence. We then present and compare an array of alternative methods that allow the inclusion of non-randomized studies in a network meta-analysis of RCTs: the naïve data synthesis, the design-adjusted synthesis, the use of non-randomized evidence as prior information and the use of three-level hierarchical models. We apply some of the methods in two previously published clinical examples comparing percutaneous interventions for the treatment of coronary in-stent restenosis and antipsychotics in patients with schizophrenia. We discuss in depth the advantages and limitations of each method, and we conclude that the inclusion of real-world evidence from non-randomized studies has the potential to corroborate findings from RCTs, increase precision and enhance the decision-making process.

Journal: Stat Med |
Year: 2017
Citation: 96