loader
publication

Innovation

Welcome to our research page featuring recent publications in the field of biostatistics and epidemiology! These fields play a crucial role in advancing our understanding of the causes, prevention, and treatment of various health conditions. Our team is dedicated to advancing the field through innovative studies and cutting-edge statistical analyses. On this page, you will find our collection of research publications describing the development of new statistical methods and their application to real-world data. Please feel free to contact us with any questions or comments.

Filter

Topic

History

Showing 1 of 1 publications

Handling missing predictor values when validating and applying a prediction model to new patients

Missing data present challenges for development and real-world application of clinical prediction models. While these challenges have received considerable attention in the development setting, there is only sparse research on the handling of missing data in applied settings. The main unique feature of handling missing data in these settings is that missing data methods have to be performed for a single new individual, precluding direct application of mainstay methods used during model development. Correspondingly, we propose that it is desirable to perform model validation using missing data methods that transfer to practice in single new patients. This article compares existing and new methods to account for missing data for a new individual in the context of prediction. These methods are based on (i) submodels based on observed data only, (ii) marginalization over the missing variables, or (iii) imputation based on fully conditional specification (also known as chained equations). They were compared in an internal validation setting to highlight the use of missing data methods that transfer to practice while validating a model. As a reference, they were compared to the use of multiple imputation by chained equations in a set of test patients, because this has been used in validation studies in the past. The methods were evaluated in a simulation study where performance was measured by means of optimism corrected C-statistic and mean squared prediction error. Furthermore, they were applied in data from a large Dutch cohort of prophylactic implantable cardioverter defibrillator patients.

Journal: Stat Med |
Year: 2020
Citation: 25