loader
publication

Innovation

Welcome to our research page featuring recent publications in the field of biostatistics and epidemiology! These fields play a crucial role in advancing our understanding of the causes, prevention, and treatment of various health conditions. Our team is dedicated to advancing the field through innovative studies and cutting-edge statistical analyses. On this page, you will find our collection of research publications describing the development of new statistical methods and their application to real-world data. Please feel free to contact us with any questions or comments.

Filter

Topic

History

Showing 1 of 3 publications

Dealing with missing data using the Heckman selection model: methods primer for epidemiologists
Journal: Int. J. Epidemiol. |
Year: 2023
Citation: 1
Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis

Objective: To externally validate various prognostic models and scoring rules for predicting short term mortality in patients admitted to hospital for covid-19.

Design: Two stage individual participant data meta-analysis.

Setting: Secondary and tertiary care.

Participants: 46914 patients across 18 countries, admitted to a hospital with polymerase chain reaction confirmed covid-19 from November 2019 to April 2021.

Data sources: Multiple (clustered) cohorts in Brazil, Belgium, China, Czech Republic, Egypt, France, Iran, Israel, Italy, Mexico, Netherlands, Portugal, Russia, Saudi Arabia, Spain, Sweden, United Kingdom, and United States previously identified by a living systematic review of covid-19 prediction models published in The BMJ, and through PROSPERO, reference checking, and expert knowledge.

Model selection and eligibility criteria: Prognostic models identified by the living systematic review and through contacting experts. A priori models were excluded that had a high risk of bias in the participant domain of PROBAST (prediction model study risk of bias assessment tool) or for which the applicability was deemed poor.

Methods: Eight prognostic models with diverse predictors were identified and validated. A two stage individual participant data meta-analysis was performed of the estimated model concordance (C) statistic, calibration slope, calibration-in-the-large, and observed to expected ratio (O:E) across the included clusters.

Main outcome measures: 30 day mortality or in-hospital mortality.

Results: Datasets included 27 clusters from 18 different countries and contained data on 46 914patients. The pooled estimates ranged from 0.67 to 0.80 (C statistic), 0.22 to 1.22 (calibration slope), and 0.18 to 2.59 (O:E ratio) and were prone to substantial between study heterogeneity. The 4C Mortality Score by Knight et al (pooled C statistic 0.80, 95% confidence interval 0.75 to 0.84, 95% prediction interval 0.72 to 0.86) and clinical model by Wang et al (0.77, 0.73 to 0.80, 0.63 to 0.87) had the highest discriminative ability. On average, 29% fewer deaths were observed than predicted by the 4C Mortality Score (pooled O:E 0.71, 95% confidence interval 0.45 to 1.11, 95% prediction interval 0.21 to 2.39), 35% fewer than predicted by the Wang clinical model (0.65, 0.52 to 0.82, 0.23 to 1.89), and 4% fewer than predicted by Xie et al's model (0.96, 0.59 to 1.55, 0.21 to 4.28).

Conclusion: The prognostic value of the included models varied greatly between the data sources. Although the Knight 4C Mortality Score and Wang clinical model appeared most promising, recalibration (intercept and slope updates) is needed before implementation in routine care.

Journal: BMJ |
Year: 2022
Citation: 20
How well can we assess the validity of non-randomised studies of medications? A systematic review of assessment tools

Objective: To determine whether assessment tools for non-randomised studies (NRS) address critical elements that influence the validity of NRS findings for comparative safety and effectiveness of medications.

Design: Systematic review and Delphi survey.

Data sources: We searched PubMed, Embase, Google, bibliographies of reviews and websites of influential organisations from inception to November 2019. In parallel, we conducted a Delphi survey among the International Society for Pharmacoepidemiology Comparative Effectiveness Research Special Interest Group to identify key methodological challenges for NRS of medications. We created a framework consisting of the reported methodological challenges to evaluate the selected NRS tools.

Study selection Checklists or scales assessing NRS.

Data extraction: Two reviewers extracted general information and content data related to the prespecified framework.

Results: Of 44 tools reviewed, 48% (n=21) assess multiple NRS designs, while other tools specifically addressed case-control (n=12, 27%) or cohort studies (n=11, 25%) only. Response rate to the Delphi survey was 73% (35 out of 48 content experts), and a consensus was reached in only two rounds. Most tools evaluated methods for selecting study participants (n=43, 98%), although only one addressed selection bias due to depletion of susceptibles (2%). Many tools addressed the measurement of exposure and outcome (n=40, 91%), and measurement and control for confounders (n=40, 91%). Most tools have at least one item/question on design-specific sources of bias (n=40, 91%), but only a few investigate reverse causation (n=8, 18%), detection bias (n=4, 9%), time-related bias (n=3, 7%), lack of new-user design (n=2, 5%) or active comparator design (n=0). Few tools address the appropriateness of statistical analyses (n=15, 34%), methods for assessing internal (n=15, 34%) or external validity (n=11, 25%) and statistical uncertainty in the findings (n=21, 48%). None of the reviewed tools investigated all the methodological domains and subdomains.

Conclusions: The acknowledgement of major design-specific sources of bias (eg, lack of new-user design, lack of active comparator design, time-related bias, depletion of susceptibles, reverse causation) and statistical assessment of internal and external validity is currently not sufficiently addressed in most of the existing tools. These critical elements should be integrated to systematically investigate the validity of NRS on comparative safety and effectiveness of medications.

Systematic review protocol and registration: https://osf.io/es65q.

Journal: BMJ Open |
Year: 2021
Citation: 7