Welcome to our research page featuring recent publications in the field of biostatistics and epidemiology! These fields play a crucial role in advancing our understanding of the causes, prevention, and treatment of various health conditions. Our team is dedicated to advancing the field through innovative studies and cutting-edge statistical analyses. On this page, you will find our collection of research publications describing the development of new statistical methods and their application to real-world data. Please feel free to contact us with any questions or comments.
Filter
Topic
Showing 1 of 7 publications
Background: With many disease-modifying therapies currently approved for the management of multiple sclerosis, there is a growing need to evaluate the comparative effectiveness and safety of those therapies from real-world data sources. Propensity score methods have recently gained popularity in multiple sclerosis research to generate real-world evidence. Recent evidence suggests, however, that the conduct and reporting of propensity score analyses are often suboptimal in multiple sclerosis studies.
Objectives: To provide practical guidance to clinicians and researchers on the use of propensity score methods within the context of multiple sclerosis research.
Methods: We summarize recommendations on the use of propensity score matching and weighting based on the current methodological literature, and provide examples of good practice.
Results: Step-by-step recommendations are presented, starting with covariate selection and propensity score estimation, followed by guidance on the assessment of covariate balance and implementation of propensity score matching and weighting. Finally, we focus on treatment effect estimation and sensitivity analyses.
Conclusion: This comprehensive set of recommendations highlights key elements that require careful attention when using propensity score methods.
Ideally, a meta-analysis will summarize data from several unbiased studies. Here we look into the less than ideal situation in which contributing studies may be compromised by non-differential measurement error in the exposure variable. Specifically, we consider a meta-analysis for the association between a continuous outcome variable and one or more continuous exposure variables, where the associations may be quantified as regression coefficients of a linear regression model. A flexible Bayesian framework is developed which allows one to obtain appropriate point and interval estimates with varying degrees of prior knowledge about the magnitude of the measurement error. We also demonstrate how, if individual-participant data (IPD) are available, the Bayesian meta-analysis model can adjust for multiple participant-level covariates, these being measured with or without measurement error.
Background: Accurate risk prediction is needed in order to provide personalized healthcare for chronic kidney disease (CKD) patients. An overload of prognosis studies is being published, ranging from individual biomarker studies to full prediction studies. We aim to systematically appraise published prognosis studies investigating multiple biomarkers and their role in risk predictions. Our primary objective was to investigate if the prognostic models that are reported in the literature were of sufficient quality and to externally validate them.
Methods: We undertook a systematic review and appraised the quality of studies reporting multivariable prognosis models for end-stage renal disease (ESRD), cardiovascular (CV) events and mortality in CKD patients. We subsequently externally validated these models in a randomized trial that included patients from a broad CKD population.
Results: We identified 91 papers describing 36 multivariable models for prognosis of ESRD, 50 for CV events, 46 for mortality and 17 for a composite outcome. Most studies were deemed of moderate quality. Moreover, they often adopted different definitions for the primary outcome and rarely reported full model equations (21% of the included studies). External validation was performed in the Multifactorial Approach and Superior Treatment Efficacy in Renal Patients with the Aid of Nurse Practitioners trial (n = 788, with 160 events for ESRD, 79 for CV and 102 for mortality). The 24 models that reported full model equations showed a great variability in their performance, although calibration remained fairly adequate for most models, except when predicting mortality (calibration slope >1.5).
Conclusions: This review shows that there is an abundance of multivariable prognosis models for the CKD population. Most studies were considered of moderate quality, and they were reported and analysed in such a manner that their results cannot directly be used in follow-up research or in clinical practice.
Background: The Framingham risk models and pooled cohort equations (PCE) are widely used and advocated in guidelines for predicting 10-year risk of developing coronary heart disease (CHD) and cardiovascular disease (CVD) in the general population. Over the past few decades, these models have been extensively validated within different populations, which provided mounting evidence that local tailoring is often necessary to obtain accurate predictions. The objective is to systematically review and summarize the predictive performance of three widely advocated cardiovascular risk prediction models (Framingham Wilson 1998, Framingham ATP III 2002 and PCE 2013) in men and women separately, to assess the generalizability of performance across different subgroups and geographical regions, and to determine sources of heterogeneity in the findings across studies.
Methods: A search was performed in October 2017 to identify studies investigating the predictive performance of the aforementioned models. Studies were included if they externally validated one or more of the original models in the general population for the same outcome as the original model. We assessed risk of bias for each validation and extracted data on population characteristics and model performance. Performance estimates (observed versus expected (OE) ratio and c-statistic) were summarized using a random effects models and sources of heterogeneity were explored with meta-regression.
Results: The search identified 1585 studies, of which 38 were included, describing a total of 112 external validations. Results indicate that, on average, all models overestimate the 10-year risk of CHD and CVD (pooled OE ratio ranged from 0.58 (95% CI 0.43-0.73; Wilson men) to 0.79 (95% CI 0.60-0.97; ATP III women)). Overestimation was most pronounced for high-risk individuals and European populations. Further, discriminative performance was better in women for all models. There was considerable heterogeneity in the c-statistic between studies, likely due to differences in population characteristics.
Conclusions: The Framingham Wilson, ATP III and PCE discriminate comparably well but all overestimate the risk of developing CVD, especially in higher risk populations. Because the extent of miscalibration substantially varied across settings, we highly recommend that researchers further explore reasons for overprediction and that the models be updated for specific populations.
It is widely recommended that any developed - diagnostic or prognostic - prediction model is externally validated in terms of its predictive performance measured by calibration and discrimination. When multiple validations have been performed, a systematic review followed by a formal meta-analysis helps to summarize overall performance across multiple settings, and reveals under which circumstances the model performs suboptimal (alternative poorer) and may need adjustment. We discuss how to undertake meta-analysis of the performance of prediction models with either a binary or a time-to-event outcome. We address how to deal with incomplete availability of study-specific results (performance estimates and their precision), and how to produce summary estimates of the c-statistic, the observed:expected ratio and the calibration slope. Furthermore, we discuss the implementation of frequentist and Bayesian meta-analysis methods, and propose novel empirically-based prior distributions to improve estimation of between-study heterogeneity in small samples. Finally, we illustrate all methods using two examples: meta-analysis of the predictive performance of EuroSCORE II and of the Framingham Risk Score. All examples and meta-analysis models have been implemented in our newly developed R package "metamisc".
Background: The objective of this systematic review is to investigate the use of Bayesian data analysis in epidemiology in the past decade, and particularly to evaluate the quality of research papers reporting the results of these analyses.
Methods: Complete volumes of five major epidemiological journals in the period 2005-2015 were searched via Pubmed. In addition we performed an extensive within-manuscript search using a specialized Java application. Details of reporting on Bayesian statistics were examined in original research papers with primary Bayesian data analyses.
Results: The number of studies in which Bayesian techniques were used for primary data analysis remain constant over the years. Though many authors presented thorough descriptions of the analyses they performed and the results they obtained, several reports presented incomplete method sections, and even some incomplete results sections. Especially, information on the process of prior elicitation, specification and evaluation was often lacking.
Conclusions: Though available guidance papers concerned with reporting of Bayesian analyses emphasize the importance of transparent prior specification, the results obtained in this systematic review show that these guidance papers are often not used. Additional efforts should be made to increase the awareness of the existence and importance of these checklists in order to overcome the controversy with respect to the use of Bayesian techniques. The reporting quality in epidemiological literature could be improved by updating existing guidelines on the reporting of frequentist analyses to address issues that are important for Bayesian data analyses.
BACKGROUND: The CHA2DS2-VASc decision rule is widely recommended for estimating stroke risk in patients with atrial fibrillation (AF) though validation studies show ambiguous and conflicting results.
OBJECTIVES: We aimed to (1) review existing studies validating CHA2DS2-VASc in AF patients not (yet) anticoagulated, (2) meta-analyze estimates of stroke risk per score, and (3) explore sources of heterogeneity across the validation studies.
METHODS: We performed a systematic literature review and random effects meta-analysis of studies externally validating CHA2DS2-VASc in AF patients not on anticoagulants. To explore between-study heterogeneity in stroke risk, we stratified studies to the clinical setting in which patient enrollment started, and performed meta-regression.
RESULTS: In total 19 studies were evaluated with over two million person-years of follow-up. In studies recruiting AF patients in hospitals, stroke risk for a score of zero, one and two were 0.4% (approximate 95% prediction interval (PI) 0.2 to 3.2%), 1.2% (95% PI 0.1 - 3.8%) and 2.2% (95% PI 0.03 - 7.8%), respectively. This was consistently higher than studies recruiting patients from the open general population, with risks of 0.2% (95% PI 0.0 - 0.9%), 0.7% (0.3 - 1.2%) and 1.5% (95% PI 0.4 - 3.3%) for score zero to two respectively. Heterogeneity as reflected by the wide prediction intervals could not be fully explained by meta-regression.
CONCLUSIONS: Studies validating CHA2DS2-VASc demonstrate high heterogeneity in predicted stroke risks for different scores.